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INVERSION OF THE ACOUSTIC PLANE WAVE
REFLECTION RESPONSE OF A LAYERED OCEAN BOTTOM

1. INTRODUCTION

Proper interpretation of acoustic signals measured at sea often requires
that their interaction within the ocean bottom he considered. This is
particularly true at the low frequencies used in passive sonar applications
since long wavelength sound waves can penetrate the surficial sediments. The
effect of a layered ocean bottom on acoustic propagation is usually treated in
terms of bottom loss, defined as the ratio of reflected to incident plane wave
intensities expressed in decibels, as a function of frequency and qrazing
angle.

Estimates of bottom structure (e.g., density and sound speed profiles)
can be obtained by comparing the bottom loss inferred from experiments with
that calculated for idealized geoacoustic models. Parameters of the
geoacoustic models are adjusted until calculated values of bottom loss agree
with measured values according to criteria specified for this curve-fitting
approach. Experimental bottom loss is often inferred from propagation
measurements in which small explosive charges are used as sound sources.
Although explosives provide the required broadband frequency response, their
point-source distribution can give rise to multipaths in the subbottom that
complicate determination of the bottom loss. Difficulties in interpretation
occur at those source/receiver offsets for which subbottom refracted arrivals
become time-coincident with arrivals reflected from the water/sediment
interface.1

The mathematical formulation whereby bottom loss is determined from a
specification of the layered bottom structure is a well-posed problem of the
"forward" type. The aim of investigations of bottom loss is a solution of the
"inverse" problem, whereby the structure of the ocean bottom is determined
from a limited knowledge of the bottom loss. Much of the theoretical effort
on the inverse problem has been confined to the model of plane waves scattered
by a one-dimensional inhomogeneous medium.

Two comprehensive reviews of formal results on one-dimensional inverse
theory are given by Burridge 2 and Newton.3 Most of the effort has
concentrated on exact methods of inversion, and few numerical results on
simulated or real data have appeared. An exception is found in the recent
work of Candel et al. 4 ,5 In their method, the acoustic field is first split
into upgoing and downgoing waves.6 Application of the forward scattering
approximation leads, in a straightforward way, to an analytical expression for
the reflection coefficient in the form of a nonlinear Fourier transform of the
logarithmic derivative of the admittance. Inversion of the integral transform
leads to a direct (noniterative) numerical algorithm for determining
admittance as a function of depth from the impulse response of the medium.

In this report, we present the results to date on our implementation of
the inversion technique proposed by Candel et al. 4 ,5 for simulated data.

.. ....... -.....- '-.-.-.-...... ......... . .. -
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Other promising numerical inversion schemes that have appeared in the recent
literature7-12 are not discussed. In section 2 we review Candel et al.'s
treatment of the forward problem for global and local wave representations and
develop an equivalent integral equaLion form. In section 3 we develop an
analytic expression for the reflection coefficient based on the forward
scattering approximation. The same result is obtained in section 4 from WKBJ
theory. A brief development of the Ricatti equation satisfied by the
reflection coefficient is presented in the appendix. In section 5 we indicate
how the approximate expression for the reflection coefficient leads to an
effi-ient inversion method. After some discussion on implementation of the
inversion algorithm, we present several numerical examples on simulated data
to illustrate the method in section 6.
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2. THE FORWARD PROBLEM

2.1 THE MATHEMATICAL MODEL

The mathematical model to be considered is shown in figure 1. An
inhomogeneous liquid with density, p(z), and sound speed, c(z), which are
arbitrary functions of depth, occupies the region 0 < z < H between two
homogeneous liquids. It is convenient to regard the region 0 < z < H as
divided into M layers of thickness, hm, m = 1, 2, ... , M. The density and
sound speed within each layer are taken to vary continuously with
discontinuities in p(Z) and c(z) introduced at layer boundaries. The
homogeneous regions are characterized by constant density and sound speed
pairs po, co for z < 0 and Pl, cl for z > H. All regions are assumed
to be nonabsorbing.

An acoustic plane wave, Pi, initially propagating downward at a grazing
angle 9o to the z = 0 plane, encounters the inhomogeneous medium at z = 0.
Within 0 < z < H, the incident wave is partially reflected and a reflected
wave Rpr is returned to z < 0. For z > H, where no further reflections
occur, only a transmitted wave Tpt continues to propagate.

TPt P(z), c(z)

;, z =H

Figure 1. Mathematical Model

2.2 GLOBAL FIELD EQUATIONS

i For stratified media, the wave vectors are confined to, say, the

xz-plane, so that all field quantities are independent of y. Moreover, all
waves exhibit a common wavenumber in the x-direction, i.e., kx = ko cos ao
fixed by the angle of the incident wave. Assuming time-harmonic waves win
angular frequency w = 2wf, the pressure and particle velocity can be
represented by p(z)exp(ikxx - it) and [u(z), 0, w(z)]exp(ikxx - it),
respectively. It follows that the basic equations describing the acoustic
field in an inhomogeneous niedium13 .duce to the for,

9..3
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p' = iipw, (1)

w' = ikzYzp, (2)

u = kxp/(wo), (3)

:" where the prime denotes d/dz and kz = (k
2 - k )112 is the longitudinal

component of the total wavenumber k = wIc at a given depth z. Yz defines
a "longitudinal admittance,"

Yz = (kz/k)l(pc) = kz/(up). (4)

For a plane wave propagating in a uniform medium with (real) wavenumbers kx
and kz, Yz is the ratio w/p for a downgoing wave and -w/p for an upgoing
wave. At normal incidence (eo = 90°), kz = k and Yz reduces to Y = 1/(oc).
Equations (1) and (2) can be cast into the compact matrix form,*(:P) =(kY iwp) (wP)5

We consider only the case for which kz remains real everywhere, i.e.,
no total reflection occurs within the inhomogeneous region. Then the only
wave propagating in z > H can be represented by

p(z) = P exp[ikz(z - H)], (6)

w(z) = W exp[ikz(z - H)]. (7)

From equation (2) it follows that ikzW = ikzYzP, whence W = YzP. If we
normalize P to unity, then appropriate initial conditions for the system
i- -quation (5) are

p(H) = (8)

w(H) = Yz(H). (9)

With the above initial conditions, p(z) and w(z) can be calculated
everywhere within 0 < z < H by numerically integrating the system in equation
(5). The reflection and transmission coefficients may be obtained by letting
A and B designate the incident and reflected amplitudes in z < 0. Then the
field in this homogeneous region is represented by

p(z) = A exp(ikzz) + B exp(-ikzz), (10)

where kz = (k
2 - k 2)112. According to equation (2),
0 X

w(z) = Yz[A exp(ikzz) - B exp(-ikzz)]. (11)

Solving equations (10) and (11) for A and B and evaluating at z = 0 gives

A = [p(O) + w(O)jYz(O)]12, (12)

B = [p(O) - w(O)IYz(O)]12. (13)
4

. . . . .. . . . . . . . . . ........ .. .... .... .
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The reflection and transmission coefficients are then determined by

R = B/A = [p(O) - w(O)/Yz(O)]I[p(O) + w(O)/Yz(0)], (14)

T I/A = 2/[P(O) + w(O)IYz(O)]. (15)

2.3 LOCAL FIELD EQUATIONS

The system in equation (5) together with initial conditions (8) and (9)
provides a formal solution to the global evolution of the field. It is useful
to obtain an alternate representation in terms of local waves, i.e., at each
depth z to decompose the total field into upgoing and downgoing components.
Although such a decomposition is not unique for inhomogeneous media,

14,15

conditions for which reflected wave amplitudes are small relative to the
incident wave amplitude suggest splitting the field into local waves as if the
medium were locally homogeneous.

At each depth, we introduce a local upgoing wave, U, and a local

downgoing wave, 0, defined by

) = (p + w/Yz)12, (16)

U = (p - wlYz)12. (17)

While the above decomposition is somewhat arbitrary for inhomogeneous media,
it is a classical one.6 ,13 ,16,17 For homogeneous media, the splitting
defined by equations (16) and (17) provides the desired identification of two
elementary waves, as indicated by substitution into equations (10) and (11).

Equations (16) and (17) are readily inverted to give

p - + U, (18)

w Yz(D - U). (19)

Substitution of equations (18) and (19) into the coupled system (5) determines
a new coupled system for the local fields U and 0 in the form

(o' (kz 0 )()\ 
-(0

\"g \ u) g(1 )(D) (0
where we have set

g Yz (2Yz) = (ZnYz)'/2. (21)

When the medium is homogeneous, the system in equation (20) decouples and
U and 0 take the usual form of upgoing and downgoing waves. When the medium
is inhomogeneous, coupling between U and D arises via g, the relative variation
of the longitudinal admittance.

5

S-, -2
... .. . .. .. . .. . .. .. . .. .
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Integration of the system in equation (20) can be started at z = H.
Below that depth, the only wave is downgoing. Choosing the downgoing
amplitude as unity determines the initial conditions,

D(H) =1, (22)

U(H) = 0, (23)

for the system in equation (20), which accord with conditions (8) and (9) for
the system in equation (5) obtained earlier. Since U(z) and D(z) are
determined at every depth z by numerical integration, it is reasonable to
define local reflection and transmission coefficients as

R(z) = U(z)/D(z), (24)

T(z) = 1/D(z). (25)

The global field quantities p and w are continuous across discontinuities
in the properties of the medium. The local waves U and D, however, are
discontinuous there. Accordingly, some care is required when discontinuities
in density and/or sound speed are encountered during the integration of the
system in equation (20). Suppose an admittance jump of magnitude Y+ - Y
occurs at depth zo, where Y, = Y (zo * 0). Then the continuity of p and-w

z 0
together with equations (18) and (19) determines the local wave U and
Do at z0 - 0 in terms of the local waves U+ and D+ at z0 +0 according to

p = 0_ + U_ = D+ + U+ p+, (26)

w_ = Y (D - U_) = - U+) = w+, (27)

from which the required jump conditions on the local waves are found to he

D- = D+(1 + Y+/Y_)/2 + U+(1 - Y+/Y_)f2, (28)

U_ = D+(1 - Y+/Y_)/2 + U+(I + Y+/Y_)/2. (29)

2.4 INTEGRAL EQUATION REPRESENTATION

The system in equation (20) can be rearranged into the alternate form,

(D (+ g3

where
g, -g * ik .  (31)

6
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The differential system in equation (30) together with initial conditions in
equations (22) and (23) can be converted into an equivalent integral form,
e.g., by the variation of parameters method, to obtain

z
D(z) = exp~f+(z)] (1 + f g(s) U(s) exp[-f+(s)]) ds, (32)

H

z
U(z) = exp[f (z)] fg(s) D(s) exp[-f (s)] ds, (33)

H

where

z
f,(z) = fg,(s) ds. (34)

H

To this point the theory is exact. Approximations to U and D are now
developed, leading to a useful analytic result for R, which forms the basis of
a noniterative method of profile inversion. It is worthwhile noting that,
whereas the local waves U and D satisfy the differential system in equation
(20), the reflection coefficient R = U/D satisfies a nonlinear equation of the
Ricatti type. This point is developed briefly in the appendix.

7

C. .i,* .
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3. FORWARD SCATTERING APPROXIMATION

While the differential system in equation (20) is readily solved
numerically, an interesting approximation method may he developed that leads,
in a straightforward way, to an analytic representation for the reflection
coefficient. It is convenient to derive this result by solving equations (32)
andJ33) by successive approximations. In this scheme hiqher order itprates

U(i) and i +L are obtained from previous ones, U01 and Di), by
substituting the latter values into the right-hand side of equations (32) and
(33). Candel et al. 4 initiate the procedure by using a forward scatterinq
approximation. This consists of, first, neglecting the upgoing wave I from
equation (32), solving for U, and then using the D obtained in this step in
equation (33) and solving for U. Although it is clearly possible to continue
iterating in this fashion, for jul << JDo it is useful to examine the
approximate solution obtained at this stage. In the approach just described,
the differential system in equation (20) is replaced with a system for which
the upper off-diagonal element -1 on the right-hand side is replaced by zero.

From equation (32) with u(O) 0, the solution for d(O) is found to be

z

D(O)(z) = exp[f+(z)] = [Y (H)/Yz ]12 exp[if k (s) dsi. (35)

H

Substitution of equation (35) into the right-hand side of equation (33) leads
to the solution for U(1) in the form

z S

U 1)(z) = exp[f_(z)lfg(s) exp[2ifkz(t) dti ds. (36)

H H

A useful approximation for the local reflection coefficient can now be
obtained from equations (35) and (36) by forming the ratio U(1)(z)/D(O)(z).

The result evaluated at z = 0 is

H s

R(1)(0) -fg(s) exp[2ifkz(t) dt] ds, (37)

0 0

where the limits of integration have been altered according to

S z S
~+f

H H z

Although equation (37) is an approximation, it has been shown
numerically 4 to provide accurate results in many situations of practical
interest. Moreover, this simple result obtained from the forward scattering

approximation forms the hasis of a method to recover the admittance versus
depth of an inhomogeneous medium from the impulse respnnse. We will develop
toe formalism of t;is method in a subsequent section.

8
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It is shown in the appendix that equation (37) follows from the Ricatti

equation formulation for R = U/I. Before proceeding to the development of the
inversion approach from equation (37), it is worthwhile to examine this result

within the context of the WKBJ approximation.

L 9
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4. WKBJ APPROXIMATION

The approximation given by equation (37) has been derived
elsewhere.8 ,13 ,14  It can be developed from a WKBJ representation for the
solution in the region 0 < z < H. The appropriate WKBJ form for the acoustic
problem is

p(z) = A(z)W,.(z) + B(z)W_(z), (38)

where A(z) and B(z) are functions to be determined and

W (z) = exp[* if k z(s) ds]/[Yz (z)] (39)

H

(W. is not to be confused with the amplitude of the particle velocity used
in section 2.2.) We recall that since we are only considering real propagating
waves, the denominator of equation (39) is well defined throughout 0 < z < H.

A coupled system of differential equations for A and B is readily obtained

by direct manipulation. 16 With the identification D = AW+ and U = BW , there
follows from equations (30), (31), (38), and (39) the sequence

D' = (-g + ikz)D + gU

= (W.-W+)D + gU

= AW+ + gBW_ = A'W+ + AWI,

which determines the result

A' gBY W2. (40)

The result for B' is obtained in a similar way. The final coupled system
for A and B can be expressed in the compact matrix form,

02

(: ) ( 2+~ Y W ~ A (41)

From the initial conditions for U and D, it follows that appropriate initial
conditions for the system in equation (41) are given by

A(H) = [Yz(H)]1I 2, (42)

B(H) = 0. (43)

10

'- -.--" -- - - -- .- ' . ,' . -



.W

TR 6925

The above initial conditions are readily incorporated into the integral
equation form equivalent to the differential system in equation (41), i.e.,

C'.,z 5
A(z) = [Y (H)]112 + f g(s) B(s) exp[-2i f kz(t) dt] ds, (44)

Z H H

z s
B(z) = fg(s) A(s) exp[+2ifk (t) dt] ds, (45)

H H

The usual assumption invoked in attempting a solution of the WKBJ form
given by equations (38) and (39) is that variations in the medium are slow
compared with the wavelength of the waves. Under these conditions, the
relative variation of longitudinal admittance 9 << I and the system in
equations (44) and (45) can be solved by successive approximation. Setting
g = 0 initially leads to zeroth order estimates A(O) [Yz(H)]I/2 and
B(O) = 0. Substituting these results into the right-hand sides of equations
(44) and (45), we find A1) = A 0) and

B(1 )(z) [Yz(H)] fg(s) exp[2if (t) dt] ds. (46)
H H

The approximate first order reflection coefficient given by R(l) =

8 / when evaluated at the surface z = 0 takes the form

H s
R(1 )() = -f g(s) exp[2i f kz(t) dt] ds, (47)

0 0

which agrees with the result obtained previously via the forward scattering
approximation.

It is worthwhile remarking that the system in equation (41) can be solved
numerically. McKisic and Haan18 suggest one method. For the problems to he
considered in the present work, with kz everywhere real, a simple

formulation is obtained by setting C = 112 W+, from which we obtain the systemz

( ' 0 g C2  
0 A

B' gC2  0 0 (48)

(D G 0 ik z C)

subject to initial conditions

A(H) = [Yz(H)]lf2, (49)

B(H) = 0, (50)

C(H) = 1. (51)

11
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Jump conditions on A and B must be applied whenever discontinuities
in Yz are encountered. From equations (26) and (27) and the relationships

D = AC/Y I 2 and U = B/(CY '2), the required connections are readily deduced to
z

be

A- = [y_y+]l12 [a+(z + Y+/Y_)/2 + C- B+(1 - Y+lY_)I2], (52)

B_ = [Y /Y+]I 2 [C2 A+(1 - Y+/Y)/2 + B+(1 + Y+/Y_)/21, (53)

where C= C = C+.

12
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5. THE INVERSE SOLUTION

5.1 PHYSICAL INTERPRETATION

Before proceeding with the development of the inversion scheme based on
equation (37), it is worthwhile commenting on the physical interpretation of
this approximate result. Since all subsequent work will focus on the
reflection coefficient at z = 0, we drop the depth dependence from the
argument of R and replace it with the frequency dependence since it isapparent that R depends on f via the parameter k.

The reflection coefficient in equation (37) appears as a sum of
contributions from successive elementary layers. About the layer at depth
z = Zo, we obtain a partial reflection coefficient,

z0dR(f) =-g(zo) exp[2io0fk z(s) ds] dZo,

with an amplitude determined by the relative variation of longitudinal

admittance at that depth and a phase,

zo

0(f) = 2 k z(s) ds,
0

associated with the time taken for the incident wave to travel to depth z =z o
and to return to depth z 0 as a partially reflected wave. This is seen more
clearly by writing 0(f) = 2rfT, where

zo

T = 2f ds/c Z(s) (54)
0

is the total propagation time from z = 0 to z = zo and back for a wave
having longitudinal phase speed cz = w/kz.

5.2 THE INVERSION FORMULAS

We observe that equation (37) determines the reflection coefficient as a
nonlinear Fourier transform. Inverting this Fourier transform recovers the
relative variation of the longitudinal admittance and integration determines
the admittance itself. We remark here that only Yz can be recovered from a
knowledge of R(f) for a given angle of incidence. Independent determination
of both the density, p, and the sound speed, c, requires more information. We
will return to this point later.

13
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To cast equation (37) in the form of a standard Fourier transform, we
introduce a new coordinate r defined by

= (2/ko) kz(s) ds, (55)

where ko designates the wavenumber in region z < 0. With the above change
of variable, we obtain the result

Q(H)
R(f) =- $ g( ) exp(2iif /co) d , (56)

0

where g(c) = Y'(r)/[2Y,(c)] and the prime is now used to denote d/dc. The

reflection coefficient now appears as a standard Fourier transform of the
relative variation of longitudinal admittance with respect to the new variable

To invert equation (56) we first compute the time response of the medium,

i.e., the reflection cuefficient as a function of time given by

r(t) = f R(f) exp(-2wift) df. (57)

Transforming both sides of equation (56) leads to the result

(H)
r(t) = - r f g(c) exp[2wif( /c0 - t] df dc. (58)

0 -

The integration with respect to f may be performed at once giving

f exp[2wif(i/co - t)] df = cos(c - cot), (59)

whence the sifting property of the delta function determines the time response
in the form

r(t) = - cog(cot) = - co[(dYz/dC)/(2Yz)] I" (60)

= Ccot

The physical interpretation of equation (60) indicates that the time
response at instant t is proportional to the relative variation of admittance
at the layer of coordinate C = cot corresponding to an actual location given
by

z
Cot (2/ko)f kz(s) ds (61)

or

zt = 2f ds/cz(s). (62)

0

14
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The "active" layer at instant t is located at a distance z corresponding to
the travel time from z = 0 to this layer and back.

Equation (60) may be rearranged in the form

Y'/Yz -2r(t)/co, (63)

I= Ct
c0t

and equation (55) may be replaced by

z' = ko/(2kz) = l/(2pcoYz), (64)

where use was made of equation (4). Since these two relations (with
appropriate initial conditions) allow the determination of Yz versus z, the
direct inversion scheme is formally complete.

The inversion algorithm of Candel et al. 5 is formed from equations
(4), (63), and (64). Three cases have to be considered separately.

5.2.1 Case A: o(z) Known, c(z) Unknown

When density p(z) is known, the sound speed c(z) can be determined by
integrating equations (63) and (64) directly, i.e.,

Yz= -(2Co)rYz, (65)z

z'= l/(2pcoYz). (66)

At each step of the numerical integration, the sound speed can be recovered
from equation (4), which can be written in the convenient form

n = pcOYZ + Cos0 1/2 (67)

where n(z) = co/c(z) = k(z)/k o is the local index of refraction and
cos 0o = kx/ko determines the grazing angle at z = 0. For a receiver
located at = o, corresponding to a point at z = zo in z < 0, the
integration of equations (65) and (66) may be started with the initial
conditions

Yz( o) = sin eo/(poCo), (68)

zo = o/(2 sin eo). (69)

5.2.2 Case B: c(z) Known, p(z) Unknown

For the case when the sound speed, c(z), is known and the density, o(z),

15
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is to be determined, equations (4) and (64) have to be modified slightly, but
equation (63) remains unchanged. We find

Y'= -(2/c)rYz9 (70)
z0

z= [n2 - cos 2 eOF 1-/2,2, (71)

0 [n2  cos 2 e] 112/(coYz). (72)

The system in equations (70) and (71) is directly integrable since n(z)
is known everywhere. At each step in the integration, the density is obtained
simply from equation (72). The initial conditions for equations (70) and (71)
are the same as in case A, subsection 5.2.1.

5.2.3 Case C: P(z) and c(z) Unknown

As indicated previously, unique determination of both density, P(z), and
sound speed, c(z), requires additional information. For the application of
Candel et al.'s 5 inversion method, reflection responses for at least two
distinct grazing angles must be provided.

Let the subscripts 1 and 2 denote the quantities that correspond to the
two distinct grazing angles GI and 02, with e2 > G1. The relevantdifferential equation system for grazing angle e1 is given by

(Y = -(2/co)r 1 (Yz) 1' (73)

z'= l/[2pc (Y)], (74)

(Y)1 = [n - cOs e]12 /(PCo), (75)

where the prime now denotes d/dc 1 . A similar set of equations corresponds
to the other grazing angle G2, but it is apparent that the integration
variables q and Q are not identical. Use of the chain rule for
differentiation, however, relates C1 to C2 so that the system for grazingangle e2 can be specified in terms of 1 in the form

= (76)
S=(Yz)2/(Yz)l, 76

(Y = -(2/co)r 2(Yz)2/(Yz)1, (77)

2 2 1/?
(Y [n2  cos e2] /(0c). (78)

16
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Now 2 is determined as a depenuent variable that allows (Yz)l and
(Yz)2 to be determined at the same depth location z. The density and
sound speed are then readily deduced by combining equations (75) and (78):

22 [cos 2  _ 2  [ 2  
2

P Co = e /1 -)Cos 2 - h(Yz)l,  (79)

n2 = [(Y cos 2 a (Y) 2 cos 2 a2] 2(Yz)- (Y2 (80)

It is evident that the integration of equation (74) can proceed only in
conjunction with the determination of p via equation (79). Appropriate
initial conditions for this case become

Yz(co)l = sin el/(poco), (81)

zo = %I(2 sin ei), (82)

2(Co) = CoYz(Co)2/Yz(4o)1, (83)

Yz(o)2 = sin e2/(poco). (84)

In principle, it is no more difficult to determine both the density,
P(z), and the sound speed, c(z), profiles than one of them. However,
reflection responses for at least two probing directions are required, and
four instead of two differential equations must be integrated.

5.3 REMARKS

Before proceeding with numerical aspects of both the forward and inverse
problems, some comments on the analysis so far are in order.

The steps leading to equation (6) required the relative variation of
admittance to be independent of frequency. While this is most certainly a
valid assumption for the density and sound speed, usual treatments regarding
absorption presume at least a linear dependence on f. Therefore, absorption
was taken to be zero in the above analysis. It may be possible to incorporate
some frequency dependence into Yz and still manipulate the integrands in a
straightforward way, but that task will not be undertaken in this report.*
Another reason for neglecting the effects of absorption lies in numerical
difficulties associated with integrating differential equations containing a
damping term.

The restriction to real propagating waves everywhere within the
inhomogeneous region 0 < z < H is partly due to numerical difficulties
associated with turning points within the domain of integration. Ad hoc
devices are sometimes introduced to avoid numerical underflow/overflow

* In fact, if absorption in the subbottom is proportional to frequency, then

Yz remains independent of f.

17
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problems in these situations. 19 On the other hand, waves are exponentially
attenuated below a turning point and quickly lose any practical capability to
return information from regions at greater depths.

In the WKBJ approach to the approximate analytical representation for the
reflection coefficient, the criterion IgI << 1 was used. This condition seems
to preclude regions containing discontinuities of the first kind from
consideration. However, the forward scattering approach of Candel et al. 4

only assumes IUI << IDI, which can hold even in the presence of discontinuous
jumps in material properties. Clearly the latter condition encompasses the
former one. It is interesting that both criteria lead to the same approximate
formula for the reflection coefficient.

The inversion scheme suggested by equations (63) and (64), which only
requires integration of a pair of first order differential equations, together
with equation (4), is direct since its implementation does not involve an
iteration procedure. On the other hand, it would appear that the scheme only
accounts for first order reflections from the inhomogeneous medium. This is
partly because the mapping between the depth coordinate, i, and the time, t,
is monotonic; i.e., later times correspond to deeper depths. For conditions
in the subbottom, which support multiple scattering, the correspondence is not
monotonic. Because of this limitation, configurations of material properties
giving rise to multiple scattering should be monitored during the inversion
process and their effect taken into account in the interpretation of results.

18
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6. NUMERICAL RESULTS

In this section, we present some numerical results based on a computer
implementation of Candel et al.'s 5 inversion procedure for simulated data.
Their numerical examples were restricted to waves propagating at normal
incidence (9o = 900) in regions of constant density (o(z) = P3) only, and
recovery of n(z) required only a single impulse response, r(t3. Here we
extend the numerical results to incorporate two impulse responses
corresponding to both normal and oblique grazing angles so that simultaneous
recovery of both n(z) and p(z) is possible. For most applications to acoustic
probing of the ocean bottom, both n(z) and p(z) are usually unknown.

For each model to be considered, the computer simulation is carried out
in the following way. At a given grazing angle, the bandlimited frequency
response R(f) is determined for a finite set of discrete frequencies

fk= kAf, k = 0, 1, ..., K-I. The reflected time series r(tn), tn = nAt,
n 0, 1, ..., N-i is determined via a discrete inverse Fourier transform.
The discrete transform is effected using a fast Fourier transform (FFT)
algorithm. N-K zeros are appended to each R(fk) response to enhance the
resolution of r(tn) due to the FFT constraint, Ataf = 1/N. With rI and
r2 computed for distinct grazing angles G1 and G2, with 92 > 91,
recovery of n(z) and p(z) proceeds according to case C, subsection 5.2.3.
Reconstructed n(z) and p(z) are finally compared with the refractive index and
density profiles initially used to generate the synthetic responses.

For the forward problem, any of the four representations of the acoustic
field (system in equation (5) for p and w; system in equation (20) for D and
U; system in equation (48) for A, B, and C; and equation (A-i) for R) together
with appropriate initial and jump conditions can be used to determine the
reflection coefficient. Experience with each system indicates that the
representation in terms of the local waves D and U requires the least
computational effort. For both the forward problem and its inverse solution,
numerical integration of the relevant system of first order differential
equations was carried out using a computer code developed by Shampine and
Gordon.20 This code is well documented and features automatic local error
control. Moreover, it has been used successfully in other studies of plane
wave reflection coefficients for layered geoacoustic models.21 To
accommodate complex functions such as D and U appearing in the system in
equation (20), it is first necessary to separate the equations into real and
imaginary parts. In addition, for numerical work, it is recommended that all
equations be converted to a dimensionless form. This is easily accomplished
by introducing the scaled quantities z* = z/H, f* = fH/co, and Y* = oocoY
where the scaling factors are the thickness of the inhomogeneous region, H,
and the density, pc, and sound speed, co, of the region z < 0. For the
inverse problem, we also have * = c/H = cot/H = t*. As a result of
this scaling, it was possible to maintain numerical accuracy using single
precision arithmetic.

For the results presented in this section, the sound speed and density
profiles within the inhomogeneous region 0 < z < H are modeled in the
following way. For each model, the region 0 < z < H is divided into M layers

19

=I

"'"'." 4" " " "" " " " " " " ' . . . " " " " " : ' " . .. . ." 7"' "



-_7

TR 6925

of thickness, hm, n = 1, 2, ... , M. Within the mth layer, the density is
assumed to be constant while the variation of c(z) is modeled according to
1/c(z) = amz + bin. The layer coefficients am dnd bm are determined
from the respective sound speeds at the top and bottom of the mth layer. With
this prescription, the admittance varies linearly within each layer.
Discontinuities in c(z) or o(z) can be introduced at layer interfaces.

Three models are considered in the numerical examples. Model I comprises
a linear refractive index and constant density layer. Model 2 provides an
example of a sudden discontinuity in both refractive index and density. Both
of these models were discussed by Candel et al. 4,5 Model 3 represents a
geoacoustic model of Hatteras Abyssal Plain based on traditional seismic
interpretation of time waveforms. 22 The sound speed and density profiles
for the three models are summarized in figure 2.

For each model, the complex frequency response R = Re[R] + i Im[R] was
computed at 256 discrete frequencies fk = kAf, k = 0, 1, ..., 255, and
af = 0.5 Hz for grazing angles 600 and 900. The complex sequence R(f) was
extended to N = 1024 points by appending 512 zero values. Since the time
response r(t) is a real sequence, R(f) satisfies the symmetry conditions
Re[R(-f)] = Re[R(f)] and Im[R(-f)] = - Im[R(f)].5,2 3 Complex arithmetic was
avoided by using an FFT algorithm specially desi ned to treat discrete
transforms of real sequences and their inverses.23,24 The inverse FFT
produced 1024 estimates of the time response at tn = nAt, n = 0, 1,
1023, where At = 1/(NAf) = 1/512 seconds. Each time response was then
convolved with a low-pass digital filter designed using the window
method.25 Filters using both rectangular and Kaiser windows were employed
with a cutoff frequency of 64 Hz. Finally, the filtered time responses were
multiplied by Af to approximate the analytical Fourier transform results. 5,23

6.1 MODEL 1

Figures 3 and 4 depict the frequency responses of the reflection
coefficient for model 1. The amplitude and phase of R(f) are shown for a
razing angle of 600 in figure 3 and 900 in figure 4. For both grazing angles
RI decreases globally with increasing frequency and exhibits weak oscillations.
The phase increases monotonically but it is nonlinear. It is easy to see that

RI is greater for oblique than for normal incidence. At zero frequency, the
values of RI correspond to the values obtained for a sudden discontinuity in
the sound speed of magnitude co/cl. This example is discussed in greater
detail by Candel et al. 4 ,5 for the case of normal incidence.

The time responses for model 1 are shown in figure 5. The upper trace
corresponds to 9o = 60' and the lower to e0 = 907. Each response has been
normalized by its peak value of r. The intial time offset corresponds to the
two-way travel time for a receiver located at z = -100 f. The time delay
To = (2z/co) sin en is implemented by applying the complex modulation
exp(-2wif o to R(?) before taking the inverse Fourier transform. The
smaller time delay for oblique incidence follows from equation (54) since the
wave propagates at the longitudinal phase speed cz. The initial rise in each
trace is due to the discontinuity in the sound speed gradient at z 0.

20

- >i -'> >.4 -- .* .* -* '.- .. / .. . - - .. , . 1 . ± . -- ,•



TR 6925

model 1 I

100

2000 1.

z =0 c 1500 p = 1.

50 1500 1.

model 2
2000 1.5

100

2000 1.5

INz= 0 :c 1554 : I.

I1580 1.13
20.4

1600 ,

model 3 1.5

300 1980

1980 1 .539

Figure 2. Density p(g/cm 3 ) and Sound Speed c(m/s) Profiles as a Function
of Depth z(m) for the Three Inhomogeneous Models Used in the Calculations
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Figure 3. (a) Amplitude and (b) Phase of the Passband Frequency Response of
the Reflection Coefficient for Model 1, Grazing Angle *o = 60
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Figure 5. Bandlimited (0-64 Hz) Time Responses of the Reflection
Coefficients for Model 1 at Grazing Angles (a) 0  60" and (b) oo =90,

Rectangular Window Filter
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Figure 6. Reconstructed Profiles for Model 1 Using the Time Responses in
Figure 5 Showing (a) Normalized Density and (0) Refractive Index
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Continuous reflections are observed as the wave traverses the inhomogeneous
* layer. The duration of the time response is less for oblique incidence, but

there is a greater peak response at the discontinuity in the sound speed
gradient at z = H. The slight oscillations evident in both responses are a
result of truncating the frequency responses with a rectangular window at the
cutoff frequency of 64 Hz. The discontinuity in R(f) generated by this
filtering operation gives rise to the well-known Gibbs phenomenon.

23,25

These oscillations are small for this example since IRI is small at cutoff.

The inversion algorithm of Candel et al. 5 was used to determine the
reconstructed values of p(z) and n(z) in figure 6 from the time responses in
figure 5. For comparison, the density and sound speed profiles of the model
used to generate R(f) are displayed on the same graphs. It is evident that

* the inversion scheme gives excellent results for this example.

6,2 MODEL 2

The frequency responses for the step-discontinuity profile of model 2 are
shown in figures 7 and 8. In this example, both density and sound speed have
a jump discontinuity at z = 50 m. The responses for e0 = 60' and eo = 90'
are given in figures 7 and 8, respectively. For this model,'the analytical
form of R is known,4 and the numerical results correctly reproduce the
constant amplitude and linear phase behavior. The reflection amplitude is
again greater for oblique incidence. The normalized time responses obtained
using a rectangular window filter are shown in figure 9 for a receiver located
at z = -100 m. As before, the peak response is larger and arrives earlier for
oblique incidence. For this example, the discontinuity introduced by
truncating R at 64 Hz produces significant Gibbs oscillations. Instead of a
"pulse-like" arrival, a sinc-response5 is observed.

Figure 10 shows the reconstruction of P(z) and n(z) based on the time
responses in figure 9. Although the reconstructed values reproduce the glooal
behavior of the model values, the effect of the large Gibbs oscillations is
apparent. Since these oscillations result from the discontinuity introduced
by the rectangular filter, it it reasonable to design a filter to reduce this
effect. Figure 11 shows time responses for model 2 after filtering with a
Kaiser window filter. For these results, a 31-point filter with 60-dB
sidelobe suppression was used. 25  It is evident that most of the effects of
the truncation have been removed. The reconstruction based on the Kaiser-
windowed time responses in figure 11 are displayed in figure 12. Except for
the values near the interface itself, the degradation due to the Gibbs
oscillations has been removed. For z > 50 m, the reconstructed estimate for
n(z) is slightly in error.

26
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Figure 7. (a) Amplitude and (b) Phase of the Passband Frequency Response of
teReflection Coefficient for Model 2, Grazing Angle a0  600
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Figure 8. (a) Amplitude and (b) Phase of the Passband Frequency Response of
the Reflection Coefficient for Model 2, Grazing Angle o _- 90'
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Figure 9. Bandlimited (0-64 Hz) Time Responses of the Reflection

Coefficients for Model 2 at Grazing Angles (a) o0 60' and
(b) so, 90', Rectangular Window Fil ter
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*Figure 10. Reconstructed Profiles for Model 2 Using the Time Responses in
Figure 9 Showing (a) Normalized Density and (b) Refractive Index
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Figure 11. Bandlimited (0-64 Hz) Time Responses of the Reflection
Coefficients for Model 2 at Grazing Angles (a) o = 60 and

(b) o0 = 900, Kaiser Window Filter
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Figure 12. Reconstructed Profiles for Model 2 Using the Time Responses in
Figure 11 Showing (a) Normalized Density and (b) Refractive Index

32

n nn n imnlli ~ m| dl ~ dd ,a, W . .. .... .. I - -- ". . ", -': , -;'z -. . '



TR 6925

6.3 MODEL 3

The final example is based on a realistic geoacoustic model for the
Hatteras Abyssal Plain region. This model was deduLed from seismic analysis
of time waveforms measured at many source-receiver ranges. The reconstruction
below is based on impulse responses for two distinct grazing angles
corresponding to only two source-receiver offsets. The frequency responses
computed for this model are shown in figure 13 for ao = 600 and in figure 14
for Go = 90. In these responses the modulations are indicative of multiple
reflections. The nonlinear phases result from the sound speed gradients
within the thick layer. At the higher frequencies the large values of IRI
suggest the presence of discontinuities within the inhomogeneous region.

Figure 15 shows the time responses for this model when a rectangular
window filter is used. The three "pulses" observed at both grazing angles
correspond to reflections from discontinuities at z = 0, 20.4, and 300 m.
Between the second and third reflections, continuous returns are observed from
the deep layer. The Gibbs oscillations are pronounced. The reconstructed
values of p(z) and n(z) based on the time series in figure 15 are given in
figure 16 together with the model values. In spite of the Gibbs oscillations,
the global behavior of the reconstructions agree well with the model inputs.
Although the density jump within the thin layer is indicated, the sound speed
change is not readily apparent at that depth. For the highest frequency
allowed in the bandlimited time responses, the thin layer is less than one
wavelength thick. Higher frequencies are required to obtain better resolution
in depth.

The time responses obtained using the same Kaiser window filter described
earlier are presented in figure 17. Now the continuous reflections from the
thick layer are more easily observed. With these time responses used in the
inversion algorithm, the reconstructed results shown in figure 18 are
obtained. Except for the poor resolution of n(z) near the thin upper layer,
the reconstructions agree well with the model inputs, particularly for the
density values. The value of co/c(z) for z > 300 m is slightly in error.
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Figure 13. (a) Amplitude and (b) Phase of the Passband Frequency Response of

the Reflection Coefficient for Model 3, Grazing Angle 9o 60"
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Figure 16. Reconstructed Profiles for Model 3 Using the Time Responses in

Figure 15 Showing (a) Normalized Density and (b) Refractive Index
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Figure 17. Bandlimited (0-64 Hz) Time Responses of the Reflection

Coefficients for Model 3 at Grazing Angles (a) e0 = 60' and (b) e o 90",
Kaiser Window Filter
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Figure 18. Reconstructed Profiles for Model 3 Using the Time Responses in

Figure 17 Showing (a) Normalized Density and (b) Refractive Index
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7. SUMMARY

The inversion method of Candel et al. 4,5 has been implemented with a
view to recovering the acoustic properties of a layered ocean bottom. For the
scattering of acoustic plane waves, the method permits the reconstruction of
both the density and the sound speed profiles via numerical integration of a
system of four first-order differential equations. Reflection data for two
distinct grazing angles are required. To test the code, noise-free reflection
data in the form of bandlimited impulse responses were generated synthetically
for three nonabsorbing inhomogeneous models. The results of the numerical
inversions are in good agreement with the original models. However, the
effects of absorption and noisy reflection data require further investigation.
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Appendix

RICATTI EQUATION FOR U/0

While the local fields U and D satisfy the coupled system in equation
(20), the reflection coefficient R = U/D satisfies a nonlinear differential
equation. It is straightforward to show that

R- = (U/ID)' = U'/D - UD'/D 2 = -2ikzR + g(l - R2), (A-1)

where U' and U' were eliminated via the system in equation (20). Equation
(A-i) is of the Ricatti type. From initial conditions (22) and (23), it
follows that

R(H) = 0. (A-2)

Recalling the jump conditions (28) and (29) on the U and U fields at
discontinuities in the medium, it can be shown that the ratio U/D undergoes a
jump condition given by

R = [(1 - Y+/Y_) + (1 + Y+/Y_)R+][(I + Y+/Y_) + (1 - Y+/Y_)R+] -1  . (A-3)

This Ricatti equation is readily converted into the integral form,

R(z) = fg(s) [1 - R(s)2 ] exp [2ifkz(t) dt] ds, (A-4)

H z

where the limits of integration were adjusted in the same way as that which
. preceded equation (37).

The success of the approximation given in equation (37) appears to rely
on IBI << IAI. This suggests that equation (A-4) can be solved by iteration
whenever U/ID is small. In the zeroth'approximation, we substitute R(O) = 0
into the integrand of equation (A-4) to obtain for the next iterate, when
evaluated at z = 0, the result,

H s
R(1(O) = - rg(s) exp[2ifk (t) dt] ds, (A-5)

0 0

which is in agreement with equations (37) and (47).
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